login
A059858
Primes p such that x^5 == 2 (mod p) has five solutions.
1
151, 241, 251, 431, 571, 641, 911, 971, 1181, 1811, 2011, 2351, 2381, 2411, 2731, 3061, 3121, 3221, 3251, 3301, 3331, 3361, 3391, 3541, 3761, 3821, 3881, 4211, 4751, 4861, 4871, 4931, 5021, 5381, 5441, 5471, 5581, 5641, 5711, 5821, 5861
OFFSET
1,1
COMMENTS
For any prime modulus, there must be exactly 0, 1 or 5 solutions to the equation with x between 0 and p - 1.
Primes == 1 (mod 5) such that 2 is a quintic residue, that is, primes p such that 2^((p-1)/5) == 1 (mod p). - Jianing Song, Jan 27 2019
PROG
(PARI) forstep(p=11, 5000, 10, if(isprime(p)&&Mod(2, p)^((p-1)/5)==1, print1(p, ", "))) \\ Jianing Song, Jan 27 2019
CROSSREFS
Cf. A040159.
Sequence in context: A142225 A334769 A334931 * A152310 A276264 A070182
KEYWORD
nonn
AUTHOR
Don Reble, Sep 20 2001
STATUS
approved