login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059758 Undulating palindromic primes: numbers that are prime, palindromic in base 10, and the digits alternate: ababab... with a != b. 28
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 18181, 32323, 35353, 72727, 74747, 78787, 94949, 95959, 1212121, 1616161, 323232323, 383838383, 727272727, 919191919, 929292929, 979797979, 989898989 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.

C. W. Trigg, Palindromic Octagonal Numbers, Journal of Recreational Mathematics, 15:1, pp. 41-46, 1982-83.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..100

P. De Geest, More undulating primes

R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations

C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review

MAPLE

for l from 3 to 31 by 2 do for i from 0 to 9 do for j from 0 to 9 do it1 := sum(i*10^(2*k), k=0..(l-1)/2): it2 := sum(j*10^(2*k+1), k=0..(l-3)/2): if isprime(it1+it2) and i<>j then printf(`%d, `, it1+it2) fi: od: od: od: # James A. Sellers, Feb 13 2001

MATHEMATICA

t = {}; t1 = {1, 3, 7, 9}; Do[p = 10 a + b; q = 10 b + a; t = Join[t, Select[Table[(p*10^(2 n + 1) - q)/99, {n, 4}], PrimeQ]], {a, t1}, {b, Range[0, 9]}]; Union[t] (* Jayanta Basu, Jun 23 2013 *)

uppQ[n_]:=Module[{idn=IntegerDigits[n]}, OddQ[Length[idn]]&& PalindromeQ[ n] && Length[Union[Partition[idn, 2]]]==1]; Select[Prime[Range[ 51*10^6]], uppQ] (* or *) Select[FromDigits/@Flatten[Table[Riffle[Table[n, i], k], {n, {1, 3, 7, 9}}, {i, 5}, {k, 0, 9}], 2], #>9&&PrimeQ[#]&]//Sort (* The second program is significantly faster than the first. *) (* Harvey P. Dale, Feb 24 2018 *)

PROG

(Python)

from sympy import isprime

A059758_list = []

for l in range(1, 300):

....for a in '1379':

........for b in '0123456789':

............if a != b:

................p = int((a+b)*l+a)

................if isprime(p):

....................A059758_list.append(p) # Chai Wah Wu, Dec 21 2014

CROSSREFS

Cf. A032758.

Sequence in context: A089360 A056728 A085112 * A158089 A104946 A272075

Adjacent sequences:  A059755 A059756 A059757 * A059759 A059760 A059761

KEYWORD

nonn,easy,base

AUTHOR

Jeff Heleen, Feb 11 2001

EXTENSIONS

More terms from James A. Sellers, Feb 13 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 22:55 EST 2019. Contains 329974 sequences. (Running on oeis4.)