OFFSET
1,3
LINKS
Vladeta Jovovic, More information
EXAMPLE
[1],
[1, 2],
[1, 9, 10],
[1, 24, 107, 90],
[1, 50, 575, 1750, 1248],
[1, 90, 2135, 16050, 38244, 24360],
[1, 147, 6265, 95445, 537334, 1078728, 631440],
...
P(2,k) = k + 2,
P(3,k) = (1/2!)*(k^2 + 9*k + 10),
P(4,k) = (1/3!)*(k^3 + 24*k^2 + 107*k + 90).
MAPLE
P := (n, k) -> (n-1)!*add(Stirling2(n, i)*binomial(k+i-1, k), i=0..n):
for n from 1 to 8 do seq(coeff(expand(P(n, x)), x, n-k), k=1..n) od; # Peter Luschny, Nov 07 2018
MATHEMATICA
row[n_] := (n-1)! CoefficientList[Sum[StirlingS2[n, i] Binomial[k+i-1, k] // FunctionExpand, {i, 0, n}], k] // Reverse;
Array[row, 10] // Flatten (* Jean-François Alcover, Jun 03 2019 *)
PROG
(PARI) row(n)={Vec((n-1)!*sum(i=0, n, stirling(n, i, 2)*binomial(x+i-1, i-1)))}
for(n=1, 10, print(row(n))) \\ Andrew Howroyd, Nov 07 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Jan 29 2001
STATUS
approved