login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059604
Coefficients of polynomials (n-1)!*P(n,k), P(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(k+i-1,k).
3
1, 1, 2, 1, 9, 10, 1, 24, 107, 90, 1, 50, 575, 1750, 1248, 1, 90, 2135, 16050, 38244, 24360, 1, 147, 6265, 95445, 537334, 1078728, 631440, 1, 224, 15610, 424340, 4734289, 21569996, 38105220, 20865600, 1, 324, 34482, 1529640, 30128049
OFFSET
1,3
EXAMPLE
[1],
[1, 2],
[1, 9, 10],
[1, 24, 107, 90],
[1, 50, 575, 1750, 1248],
[1, 90, 2135, 16050, 38244, 24360],
[1, 147, 6265, 95445, 537334, 1078728, 631440],
...
P(2,k) = k + 2,
P(3,k) = (1/2!)*(k^2 + 9*k + 10),
P(4,k) = (1/3!)*(k^3 + 24*k^2 + 107*k + 90).
MAPLE
P := (n, k) -> (n-1)!*add(Stirling2(n, i)*binomial(k+i-1, k), i=0..n):
for n from 1 to 8 do seq(coeff(expand(P(n, x)), x, n-k), k=1..n) od; # Peter Luschny, Nov 07 2018
MATHEMATICA
row[n_] := (n-1)! CoefficientList[Sum[StirlingS2[n, i] Binomial[k+i-1, k] // FunctionExpand, {i, 0, n}], k] // Reverse;
Array[row, 10] // Flatten (* Jean-François Alcover, Jun 03 2019 *)
PROG
(PARI) row(n)={Vec((n-1)!*sum(i=0, n, stirling(n, i, 2)*binomial(x+i-1, i-1)))}
for(n=1, 10, print(row(n))) \\ Andrew Howroyd, Nov 07 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Jan 29 2001
STATUS
approved