OFFSET
0,6
COMMENTS
Row sums of odd rows (e.g., 4 = 1+1+2 for 3rd row) equal the Motzkin number of next row. Row sums of even rows equal the Motzkin number of the next row - n!/((n/2)!((n/2)+1)!) (i.e., A001006(n) - A000108(n/2) where A000108 are the Catalan numbers). - Gerald McGarvey, Dec 05 2004
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
EXAMPLE
Triangle begins:
1;
0,1;
1,1,2;
0,1,2,4;
2,2,3,5,9;
0,2,4,7,12,21;
5,5,7,11,18,30,51;
...
MATHEMATICA
max = 12; A001006 = CoefficientList[ Series[ (1-x-(1-2x-3x^2)^(1/2))/(2x^2), {x, 0, max}], x] ; row[0] = A001006; row[n_] := Differences[A001006, n]; Flatten[ Table[ row[n-k][[k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 12 2012, from formula *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jan 27 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001
STATUS
approved