login
A059333
For 0<=A, 0<=B, n is an A-almost prime; m is a B-almost prime, k = n+m, k is a C-almost prime; a(n) = smallest number m such that A+B=C.
8
2, 1, 3, 23, 5, 2, 2, 73, 1, 2, 3, 52, 2, 1, 3, 227, 5, 14, 2, 44, 1, 5, 2, 232, 1, 2, 1, 4, 5, 66, 2, 1669, 1, 1, 7, 92, 2, 1, 3, 344, 4, 6, 3, 1, 11, 10, 2, 976, 3, 22, 9, 2, 2, 10, 11, 328, 1, 5, 3, 4, 9, 13, 9, 3581, 3, 6, 2, 4, 7, 10, 3, 952, 8, 2, 1, 4, 4, 3, 3, 944, 15
OFFSET
1,1
COMMENTS
a(n) is the least m such that Omega(n) + Omega(m) = Omega(n + m) where Omega(n) is the number of primes dividing n counted with multiplicity. - Sean A. Irvine, Sep 17 2022
LINKS
EXAMPLE
E.g. [ n=2 (A=1), m=1 (B=0), k=n+m=3 (C=A+B=1), so a(2)=m=1 ]; [ n=4 (A=2), m=23 (B=1), k=n+m=27 (C=A+B=3), so a(4)=m=23 ]
CROSSREFS
Sequence in context: A337892 A337891 A354196 * A345761 A106485 A126008
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Jan 26 2001
STATUS
approved