login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.
4

%I #22 Nov 12 2023 09:13:56

%S 1,1,0,1,2,0,1,6,3,0,1,12,24,4,0,1,20,90,80,5,0,1,30,240,540,240,6,0,

%T 1,42,525,2240,2835,672,7,0,1,56,1008,7000,17920,13608,1792,8,0,1,72,

%U 1764,18144,78750,129024,61236,4608,9,0,1,90,2880,41160

%N Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

%H G. C. Greubel, <a href="/A059299/b059299.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%e Triangle begins:

%e 1,

%e 1, 0,

%e 1, 2, 0,

%e 1, 6, 3, 0,

%e 1, 12, 24, 4, 0,

%e 1, 20, 90, 80, 5, 0,

%e 1, 30, 240, 540, 240, 6, 0,

%e 1, 42, 525, 2240, 2835, 672, 7, 0,

%e ...

%p T := (n, k) -> binomial(n, k) * (n - k)^k:

%p for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

%t t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* _Arkadiusz Wesolowski_, Mar 23 2013 *)

%o (Magma) /* As triangle: */ [[Binomial(n,k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Aug 22 2015

%o (PARI) concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n,k)*(n-k)^k, ", ")))) \\ _G. C. Greubel_, Jan 05 2017

%Y There are 4 versions: A059297-A059300.

%Y Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.

%Y Row sums are A000248.

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_, Jan 25 2001

%E Name corrected by _Peter Luschny_, Nov 12 2023