login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059299
Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.
4
1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 24, 4, 0, 1, 20, 90, 80, 5, 0, 1, 30, 240, 540, 240, 6, 0, 1, 42, 525, 2240, 2835, 672, 7, 0, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 0, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 0, 1, 90, 2880, 41160
OFFSET
0,5
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
EXAMPLE
Triangle begins:
1,
1, 0,
1, 2, 0,
1, 6, 3, 0,
1, 12, 24, 4, 0,
1, 20, 90, 80, 5, 0,
1, 30, 240, 540, 240, 6, 0,
1, 42, 525, 2240, 2835, 672, 7, 0,
...
MAPLE
T := (n, k) -> binomial(n, k) * (n - k)^k:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
MATHEMATICA
t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
PROG
(Magma) /* As triangle: */ [[Binomial(n, k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
(PARI) concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n, k)*(n-k)^k, ", ")))) \\ G. C. Greubel, Jan 05 2017
CROSSREFS
There are 4 versions: A059297-A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.
Sequence in context: A339031 A367270 A365770 * A332673 A128722 A324659
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 25 2001
EXTENSIONS
Name corrected by Peter Luschny, Nov 12 2023
STATUS
approved