OFFSET
1,1
COMMENTS
Presumably this is also "Primes congruent to 1 mod 41" (A212379), but that requires a proof. - N. J. A. Sloane, Jul 11 2008
Smallest counterexample: 17467 is not in A059236, but congruent to 1 mod 41 (17467 = 426*41+1). - Klaus Brockhaus, May 18 2011
LINKS
Klaus Brockhaus, Table of n, a(n) for n = 1..100000
MATHEMATICA
ok[p_]:= Reduce[Mod[x^41 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2000]], ok] (* Vincenzo Librandi, Sep 20 2012 *)
Select[Prime[Range[PrimePi[14000]]], ! MemberQ[PowerMod[Range[#], 41, #], Mod[2, #]] &] (* Bruno Berselli, Sep 20 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(13400) | not exists{x: x in ResidueClassRing(p) | x^41 eq 2}]; // Klaus Brockhaus, May 18 2011
(Magma) /* Alternatively: */ [p: p in PrimesUpTo(13400) | forall{x: x in ResidueClassRing(p) | x^41 ne 2}]; // Bruno Berselli, Sep 20 2012
(PARI) forprime(p=2, 69589957, if(trap(, 1, sqrtn(Mod(2, p), 41); 0), print1(p, ", "))) \\ Klaus Brockhaus, May 18 2011
(PARI)
N=10^5; default(primelimit, N);
ok(p, r, k)={ return ( (p==r) || (Mod(r, p)^((p-1)/gcd(k, p-1))==1) ); }
forprime(p=2, N, if (! ok(p, 2, 41), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 20 2001
STATUS
approved