This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059175 For a rational number p/q let f(p/q) = p*q divided by the sum of digits of p and q; a(n) is obtained by iterating f, starting at n/1, until an integer is reached, or if no integer is ever reached then a(n) = 0. 5
 0, 66, 66, 462, 180, 66, 31395, 714, 72, 9, 5, 15, 3, 36, 42, 39, 2, 9, 45, 462, 12, 12, 90, 3703207920, 1692600, 84, 234, 27, 3043425, 74613, 6, 7930296, 264, 4290, 510, 315, 315, 73302369360, 1155, 3, 8, 239872017, 6, 4386, 1989, 18, 17740866, 499954980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(A214866(n)) = 0. - Reinhard Zumkeller, Mar 11 2013 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583, 2012. - From N. J. A. Sloane, Jan 03 2013 EXAMPLE 3/1 -> 3/4 -> 12/7 -> 84/10=42/5 -> 210/11 -> 2310/5 = 462 so a(3)=462. 84/1 -> 84/13 -> 273/4 -> 273/4 -> ...  so a(84) = 0. MATHEMATICA f[Rational[p_, q_]] := p*q/(Total[ IntegerDigits[p]] + Total[ IntegerDigits[q]]); f[n_Integer] := n/(1 + Total[ IntegerDigits[n]]); a[n_] := If[ IntegerQ[ r = NestWhile[f, n, Not[#1 == #2 || #1 != #2 && IntegerQ[#2]]&, 2]], r, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 03 2013 *) PROG (Haskell) import Data.Ratio ((%), numerator, denominator) a059175 n = f [n % 1] where    f xs@(x:_) | denominator y == 1 = numerator y               | y `elem` xs        = 0               | otherwise          = f (y : xs)               where y = (numerator x * denominator x) %                         (a007953 (numerator x) + a007953 (denominator x)) -- Reinhard Zumkeller, Mar 11 2013 CROSSREFS Cf. A058971. Cf. A007953. Sequence in context: A008896 A071712 A080592 * A031960 A181464 A250739 Adjacent sequences:  A059172 A059173 A059174 * A059176 A059177 A059178 KEYWORD base,easy,nonn,nice AUTHOR Floor van Lamoen, Jan 15 2001 EXTENSIONS Corrected and extended by Naohiro Nomoto, Jul 20 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 22:20 EST 2018. Contains 317252 sequences. (Running on oeis4.)