login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059175 For a rational number p/q let f(p/q) = p*q divided by the sum of digits of p and q; a(n) is obtained by iterating f, starting at n/1, until an integer is reached, or if no integer is ever reached then a(n) = 0. 5
0, 66, 66, 462, 180, 66, 31395, 714, 72, 9, 5, 15, 3, 36, 42, 39, 2, 9, 45, 462, 12, 12, 90, 3703207920, 1692600, 84, 234, 27, 3043425, 74613, 6, 7930296, 264, 4290, 510, 315, 315, 73302369360, 1155, 3, 8, 239872017, 6, 4386, 1989, 18, 17740866, 499954980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(A214866(n)) = 0. - Reinhard Zumkeller, Mar 11 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583, 2012. - From N. J. A. Sloane, Jan 03 2013

EXAMPLE

3/1 -> 3/4 -> 12/7 -> 84/10=42/5 -> 210/11 -> 2310/5 = 462 so a(3)=462.

84/1 -> 84/13 -> 273/4 -> 273/4 -> ...  so a(84) = 0.

MATHEMATICA

f[Rational[p_, q_]] := p*q/(Total[ IntegerDigits[p]] + Total[ IntegerDigits[q]]); f[n_Integer] := n/(1 + Total[ IntegerDigits[n]]); a[n_] := If[ IntegerQ[ r = NestWhile[f, n, Not[#1 == #2 || #1 != #2 && IntegerQ[#2]]&, 2]], r, 0]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Apr 03 2013 *)

PROG

(Haskell)

import Data.Ratio ((%), numerator, denominator)

a059175 n = f [n % 1] where

   f xs@(x:_) | denominator y == 1 = numerator y

              | y `elem` xs        = 0

              | otherwise          = f (y : xs)

              where y = (numerator x * denominator x) %

                        (a007953 (numerator x) + a007953 (denominator x))

-- Reinhard Zumkeller, Mar 11 2013

CROSSREFS

Cf. A058971.

Cf. A007953.

Sequence in context: A008896 A071712 A080592 * A031960 A181464 A250739

Adjacent sequences:  A059172 A059173 A059174 * A059176 A059177 A059178

KEYWORD

base,easy,nonn,nice

AUTHOR

Floor van Lamoen, Jan 15 2001

EXTENSIONS

Corrected and extended by Naohiro Nomoto, Jul 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 22:20 EST 2018. Contains 317252 sequences. (Running on oeis4.)