|
|
A059165
|
|
a(n) = (n+1)*2^(n+4).
|
|
2
|
|
|
0, 16, 64, 192, 512, 1280, 3072, 7168, 16384, 36864, 81920, 180224, 393216, 851968, 1835008, 3932160, 8388608, 17825792, 37748736, 79691776, 167772160, 352321536, 738197504, 1543503872, 3221225472, 6710886400, 13958643712
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,2
|
|
COMMENTS
|
A hierarchical sequence (S(W'3{2,2}*cc) - see A059126).
Generating floretion: AB + BA with A = .5'i + .5'ii' + .5'ij' + .5'ik' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'. - Creighton Dement, Dec 19 2004
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = -1..200
Jonas Wallgren, Hierarchical sequences, 2001.
Index entries for linear recurrences with constant coefficients, signature (4,-4).
|
|
FORMULA
|
G.f.: 16/(2*x-1)^2.
a(n) = 4*A058922(n+2) = 16*A001787(n+1). - Philippe Deléham, Apr 21 2009
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = log(2)/8.
Sum_{n>=0} (-1)^n/a(n) = log(3/2)/8. (End)
|
|
MATHEMATICA
|
Table[2^(n+4)*(n+1), {n, -1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
LinearRecurrence[{4, -4}, {0, 16}, 30] (* Harvey P. Dale, Oct 29 2019 *)
|
|
PROG
|
(PARI) for(n=1, 40, print1(shift(n, n+3), ", "))
(PARI) { for (n = -1, 200, write("b059165.txt", n, " ", (n + 1)*2^(n + 4)); ) } \\ Harry J. Smith, Jun 25 2009
|
|
CROSSREFS
|
Cf. A001787, A058922.
Sequence in context: A190099 A316542 A306057 * A212506 A212512 A317235
Adjacent sequences: A059162 A059163 A059164 * A059166 A059167 A059168
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonas Wallgren, Feb 02 2001
|
|
EXTENSIONS
|
More terms from Benoit Cloitre, Apr 07 2002
Edited by N. J. A. Sloane, Apr 16 2008 at the suggestion of Vim Wenders
|
|
STATUS
|
approved
|
|
|
|