OFFSET
0,4
COMMENTS
The transpose of this lower unitriangular array is the U factor in the LU decomposition of the Hankel matrix (Bell(i+j-2))_i,j >= 1, where Bell(n) = A000110(n). The L factor is A049020 (see Chamberland, p. 1672). - Peter Bala, Oct 15 2023
LINKS
Marc Chamberland, Factored matrices can generate combinatorial identities, Linear Algebra and its Applications, Volume 438, Issue 4, 2013, pp. 1667-1677.
FORMULA
E.g.f. for T(n, k): (exp(x)-1)^k*(exp(exp(x)-1)).
n-th row is M^n*[1,0,0,0,...], where M is a tridiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) in the main and subdiagonals; and the rest zeros. - Gary W. Adamson, Jun 23 2011
T(n, k) = k!*A049020(n, k). - R. J. Mathar, May 17 2016
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*A046716(k, k-j)*Bell(n + j). - Peter Luschny, Dec 06 2023
EXAMPLE
Triangle begins:
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 3, 2]
[3] [ 5, 10, 12, 6]
[4] [15, 37, 62, 60, 24]
[5] [52, 151, 320, 450, 360, 120]
[6] [203, 674, 1712, 3120, 3720, 2520, 720]
...;
E.g.f. for T(n, 2) = (exp(x)-1)^2*(exp(exp(x)-1)) = x^2 + 2*x^3 + 31/12*x^4 + 8/3*x^5 + 107/45*x^6 + 343/180*x^7 + 28337/20160*x^8 + 349/360*x^9 + ...;
E.g.f. for T(n, 3) = (exp(x)-1)^3*(exp(exp(x)-1)) = x^3 + 5/2*x^4 + 15/4*x^5 + 13/3*x^6 + 127/30*x^7 + 1759/480*x^8 + 34961/12096*x^9 + ...
MAPLE
T := proc(n, k) option remember; `if`(k < 0 or k > n, 0,
`if`(n = 0, 1, k*T(n-1, k-1) + (k+1)*T(n-1, k) + T(n-1, k+1)))
end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..15); # Peter Bala, Oct 15 2023
CROSSREFS
KEYWORD
AUTHOR
Vladeta Jovovic, Jan 02 2001
STATUS
approved