login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058988
For a rational number p/q let f(p/q) = p*q divided by number of divisors of p+q; a(n) is obtained by iterating f, starting at n/1, until an integer is reached, or if no integer is ever reached then a(n) = 0.
4
1, 1, 1, 2, 30, 3, 14, 12, 18, 5, 33, 6, 26, 21, 3, 8, 51, 9, 38, 5, 28, 11, 92, 8, 50, 0, 9, 14, 116, 15, 93, 8, 66, 17, 105, 18, 74, 0, 156, 20, 492, 21, 86, 22, 60, 23, 0, 16, 147, 0, 17, 26, 212, 27, 330, 14, 114, 29, 354, 30, 61, 186, 9, 16, 260, 33, 201, 17, 138, 35, 426
OFFSET
1,4
LINKS
P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583 [math.HO], 2012. - From N. J. A. Sloane, Jan 03 2013
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a058988 n = numerator $ fst $
until ((== 1) . denominator . fst) f $ f (fromIntegral n, []) where
f (x, ys) = if y `elem` ys then (0, []) else (y, y:ys) where
y = numerator x * denominator x % a000005 (numerator x + denominator x)
-- Reinhard Zumkeller, Aug 29 2014
(PARI) f2(p, q) = p*q/numdiv(p+q);
f1(r) = f2(numerator(r), denominator(r));
loop(list) = {my(v=Vecrev(list)); for (i=2, #v, if (v[i] == v[1], return(1)); ); }
a(n) = {my(ok=0, m=f2(n, 1), list=List()); while(denominator(m) != 1, m = f1(m); listput(list, m); if (loop(list), return (0)); ); return(m); } \\ Michel Marcus, Feb 09 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 17 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jul 20 2001
STATUS
approved