The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058988 For a rational number p/q let f(p/q) = p*q divided by number of divisors of p+q; a(n) is obtained by iterating f, starting at n/1, until an integer is reached, or if no integer is ever reached then a(n) = 0. 4
1, 1, 1, 2, 30, 3, 14, 12, 18, 5, 33, 6, 26, 21, 3, 8, 51, 9, 38, 5, 28, 11, 92, 8, 50, 0, 9, 14, 116, 15, 93, 8, 66, 17, 105, 18, 74, 0, 156, 20, 492, 21, 86, 22, 60, 23, 0, 16, 147, 0, 17, 26, 212, 27, 330, 14, 114, 29, 354, 30, 61, 186, 9, 16, 260, 33, 201, 17, 138, 35, 426 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583 [math.HO], 2012. - From N. J. A. Sloane, Jan 03 2013
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a058988 n = numerator $ fst $
until ((== 1) . denominator . fst) f $ f (fromIntegral n, []) where
f (x, ys) = if y `elem` ys then (0, []) else (y, y:ys) where
y = numerator x * denominator x % a000005 (numerator x + denominator x)
-- Reinhard Zumkeller, Aug 29 2014
(PARI) f2(p, q) = p*q/numdiv(p+q);
f1(r) = f2(numerator(r), denominator(r));
loop(list) = {my(v=Vecrev(list)); for (i=2, #v, if (v[i] == v[1], return(1)); ); }
a(n) = {my(ok=0, m=f2(n, 1), list=List()); while(denominator(m) != 1, m = f1(m); listput(list, m); if (loop(list), return (0)); ); return(m); } \\ Michel Marcus, Feb 09 2022
CROSSREFS
Cf. A000005.
Sequence in context: A367871 A087194 A331427 * A292879 A361027 A267131
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 17 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jul 20 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 04:44 EDT 2024. Contains 372703 sequences. (Running on oeis4.)