login
A058745
McKay-Thompson series of class 70B for Monster.
1
1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, -1, 2, -2, 2, -1, 1, -2, 1, -1, 3, -2, 2, -4, 3, -2, 3, -4, 4, -4, 5, -6, 6, -7, 6, -4, 7, -8, 5, -8, 12, -11, 12, -14, 13, -12, 13, -14, 13, -14, 19, -21, 20, -24, 24, -22, 27, -27, 23, -30, 37, -34, 35, -40, 42, -40, 41
OFFSET
-1,13
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
Expansion of 1 + eta(q)*eta(q^10)*eta(q^14)*eta(q^35)/(eta(q^2)*eta(q^5) *eta(q^7)*eta(q^70)) in powers of q. - G. C. Greubel, Jun 30 2018
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n/35)) / (2 * 35^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 10 2018
EXAMPLE
T70B = 1/q - q^2 + q^3 - q^8 + q^9 - q^10 + 2*q^11 - 2*q^12 + 2*q^13 - q^14 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; B:= eta[q]*eta[q^10]*eta[q^14]* eta[q^35]/(eta[q^2]*eta[q^5]*eta[q^7]*eta[q^70]); a:= CoefficientList[ Series[q*(1 + B), {q, 0, 105}], q]; Table[a[[n]], {n, 1, 100}] (* G. C. Greubel, Jun 30 2018 *)
nmax = 100; CoefficientList[x + Series[Product[(1 + x^(5*k))*(1 + x^(7*k))/((1 + x^k)*(1 + x^(35*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
PROG
(PARI) q='q+O('q^50); F = 1 + eta(q)*eta(q^10)*eta(q^14)*eta(q^35)/(q* eta(q^2)*eta(q^5)*eta(q^7)*eta(q^70)); Vec(F) \\ G. C. Greubel, Jun 30 2018
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 24 2014
STATUS
approved