|
|
A058594
|
|
McKay-Thompson series of class 25A for Monster.
|
|
1
|
|
|
1, 0, 4, 5, 10, 16, 25, 36, 55, 75, 110, 150, 209, 280, 385, 504, 675, 880, 1155, 1485, 1925, 2450, 3136, 3960, 5010, 6276, 7875, 9784, 12175, 15040, 18576, 22800, 27986, 34155, 41670, 50604, 61400, 74204, 89605, 107800, 129568, 155250, 185810, 221760, 264385
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = -1..1000
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
Index entries for McKay-Thompson series for Monster simple group
|
|
FORMULA
|
Expansion of A + 1 + 5/A, where A = eta(q)/eta(q^25), in powers of q. - G. C. Greubel, Jun 22 2018
a(n) ~ exp(4*Pi*sqrt(n)/5) / (sqrt(10) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
|
|
EXAMPLE
|
T25A = 1/q + 4*q + 5*q^2 + 10*q^3 + 16*q^4 + 25*q^5 + 36*q^6 + 55*q^7 + ...
|
|
MATHEMATICA
|
eta[q_] := q^(1/24)*QPochhammer[q]; A:= (eta[q]/eta[q^25]); a:= CoefficientList[Series[1 + A + 5/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 22 2018 *)
|
|
PROG
|
(PARI) q='q+O('q^50); A = eta(q)/(q*eta(q^25)); Vec(A + 1 + 5/A) \\ G. C. Greubel, Jun 22 2018
|
|
CROSSREFS
|
Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
Sequence in context: A118735 A002970 A073611 * A285289 A022309 A049897
Adjacent sequences: A058591 A058592 A058593 * A058595 A058596 A058597
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Nov 27 2000
|
|
EXTENSIONS
|
More terms from Michel Marcus, Feb 20 2014
|
|
STATUS
|
approved
|
|
|
|