login
A058594
McKay-Thompson series of class 25A for Monster.
1
1, 0, 4, 5, 10, 16, 25, 36, 55, 75, 110, 150, 209, 280, 385, 504, 675, 880, 1155, 1485, 1925, 2450, 3136, 3960, 5010, 6276, 7875, 9784, 12175, 15040, 18576, 22800, 27986, 34155, 41670, 50604, 61400, 74204, 89605, 107800, 129568, 155250, 185810, 221760, 264385
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
Expansion of A + 1 + 5/A, where A = eta(q)/eta(q^25), in powers of q. - G. C. Greubel, Jun 22 2018
a(n) ~ exp(4*Pi*sqrt(n)/5) / (sqrt(10) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T25A = 1/q + 4*q + 5*q^2 + 10*q^3 + 16*q^4 + 25*q^5 + 36*q^6 + 55*q^7 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A:= (eta[q]/eta[q^25]); a:= CoefficientList[Series[1 + A + 5/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 22 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q)/(q*eta(q^25)); Vec(A + 1 + 5/A) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 20 2014
STATUS
approved