login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058548
McKay-Thompson series of class 18j for the Monster group.
1
1, 0, 1, -2, 0, 2, 1, 0, 3, 2, 0, 2, -4, 0, 1, 0, 0, 2, 7, 0, 4, -10, 0, 8, 3, 0, 8, 10, 0, 8, -15, 0, 7, 2, 0, 10, 22, 0, 17, -32, 0, 22, 10, 0, 26, 32, 0, 24, -48, 0, 25, 8, 0, 30, 62, 0, 43, -88, 0, 58, 22, 0, 65, 88, 0, 66, -127, 0, 66, 22, 0, 80, 152, 0, 107, -214, 0, 136, 52, 0
OFFSET
-1,4
COMMENTS
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) = f(A(x), A(-x)) where f(u, v) = 32 + 4 * (u + v) - 2 * (u^2 + v^2) + 2 * (u^3 + v^3) - 3*u*v * (u + v) + (u^4 + v^4) + u*v * (u^2 + v^2) - (u*v)^2 * (u + v). - Michael Somos, Apr 20 2004
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(3*n) = 0.
Expansion of A + 1/A, where A = (eta(q^3)*eta(q^18)^2*eta(q^27)/(eta(q^6) *eta(q^9)^2*eta(q^54)))^2, in powers of q. - G. C. Greubel, Jun 21 2018
EXAMPLE
T18j = 1/q + q - 2*q^2 + 2*q^4 + q^5 + 3*q^7 + 2*q^8 + 2*q^10 - 4*q^11 + ...
MATHEMATICA
nmax = 80; QP = QPochhammer; A = x^2*O[x]^nmax; A = ((QP[A + x^3]*QP[A + x^18]^2*QP[A + x^27])/(QP[A + x^6]*QP[A + x^9]^2*QP[A + x^54]))^2/x; a[n_] := SeriesCoefficient[A + 1/A, n]; Table[a[n], {n, -1, nmax}] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
eta[q_] := q^(1/24)*QPochhammer[q]; A := q*(eta[q^3]*eta[q^18]^2* eta[q^27]/( eta[q^6]*eta[q^9]^2*eta[q^54]))^2; a := CoefficientList[ Series[A + q^2/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 21 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, n==-1, A = x^2 * O(x^n); A = ((eta(x^3 + A) * eta(x^18 + A)^2 * eta(x^27 + A)) / (eta(x^6 + A) * eta(x^9 + A)^2 * eta(x^54 + A)))^2 / x; polcoeff( A + 1/A, n))} /* Michael Somos, Apr 20 2004 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved