login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058526 McKay-Thompson series of class 16e for the Monster group. 1
1, 2, -2, 4, 3, 2, -6, 4, 7, 12, -10, 16, 16, 14, -20, 20, 29, 40, -40, 52, 52, 52, -70, 68, 91, 114, -116, 148, 149, 152, -190, 196, 242, 296, -306, 368, 383, 396, -478, 496, 590, 698, -730, 856, 897, 940, -1096, 1152, 1342, 1548, -1630, 1876, 1975, 2080, -2390, 2516 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

EXAMPLE

T16e = 1/q + 2*q - 2*q^3 + 4*q^5 + 3*q^7 + 2*q^9 - 6*q^11 + 4*q^13 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 100; e4D := q^(1/2)*(eta[q]/eta[q^2])^12; T4B := e4D + 64*q/e4D; T8C := (((e4D + 64*q/e4D) /. {q -> q^4}) + O[q]^nmax)^(1/2); a:= CoefficientList[Series[(1 + 4*q + ((T8C - 1) // Normal /. {q -> q^4}) + O[q]^nmax)^(1/2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 20 2018 *)

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Sequence in context: A246836 A246953 A045828 * A112153 A112154 A112155

Adjacent sequences: A058523 A058524 A058525 * A058527 A058528 A058529

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 00:20 EST 2022. Contains 358362 sequences. (Running on oeis4.)