

A058287


Continued fraction for e^Pi.


5



23, 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, 108, 2, 2, 1, 3, 1, 7, 1, 2, 2, 2, 1, 2, 3, 2, 166, 1, 2, 1, 4, 8, 10, 1, 1, 7, 1, 2, 3, 566, 1, 2, 3, 3, 1, 20, 1, 2, 19, 1, 3, 2, 1, 2, 13, 2, 2, 11, 3, 1, 2, 1, 7, 2, 1, 1, 1, 2, 1, 19, 1, 1, 12, 11, 1, 4, 1, 6, 1, 2, 18, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

"The transcendentality of e^{Pi} was proved in 1929." (Wells)


REFERENCES

Jan Gullberg, "Mathematics, From the Birth of Numbers," W.W. Norton and Company, NY and London, 1997, page 86.
David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 81.


LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000
G. Xiao, Contfrac
Index entries for continued fractions for constants


EXAMPLE

e^Pi = 23.140692632779269005... = 23 + 1/(7 + 1/(9 + 1/(3 + 1/(1 + ...)))).  Harry J. Smith, Apr 19 2009


MAPLE

with(numtheory): cfrac(evalf((exp(1))^(evalf(Pi)), 2560), 256, 'quotients');


MATHEMATICA

ContinuedFraction[ E^Pi, 100]


PROG

(PARI) \p 300 contfrac(exp(1)^Pi)
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(1)^Pi); for (n=0, 20000, write("b058287.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Apr 19 2009


CROSSREFS

Sequence in context: A158514 A040511 A264350 * A122706 A096640 A040510
Adjacent sequences: A058284 A058285 A058286 * A058288 A058289 A058290


KEYWORD

cofr,nonn,easy


AUTHOR

Robert G. Wilson v, Dec 07 2000


EXTENSIONS

More terms from Jason Earls, Jun 21 2001


STATUS

approved



