login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058232
a(n) = (a(n-1)a(n-5) + a(n-2)a(n-4) + a(n-3)^2)/a(n-6).
1
0, 1, 0, 1, 1, -1, -1, 0, 0, 1, -1, -1, -1, -2, 1, 2, -1, 2, 1, -3, -3, -1, -4, 4, 1, -3, -5, -9, 8, 15, -4, 17, -8, -23, -3, -21, -49, 52, 76, -47, 11, -133, 79, 238, 97, 518, -417, -750, 625, -647, -343, 1967, 3048, -1000, 5553, -8375, -4233, 13375, 10912, 33503
OFFSET
0,14
COMMENTS
Satisfies the defining recursion for the Somos-6 sequence. - Michael Somos, May 25 2014
REFERENCES
N. D. Elkies, email, Nov 29 2000.
FORMULA
a(-n) = -a(n). a(n+6) * a(n-6) = a(n+4) * a(n-4) + a(n+2) * a(n-2) for all n in Z.
a(n+6) * a(n-6) = -a(n+5) * a(n-5) + 2*a(n+4) * a(n-4) - a(n)^2 for all n in Z. - Michael Somos, May 25 2014
a(n+6) * a(n-5) = - a(n+4) * a(n-3) + a(n+2) * a(n-1) for all n in Z. - Michael Somos, May 25 2014
a(n+5) * a(n-4) = a(n+4) * a(n-3) + a(n+3) * a(n-2) - a(n+2) * a(n-1) + a(n+1) * a(n) for all n in Z. - Michael Somos, May 25 2014
MATHEMATICA
nxt[{a_, b_, c_, d_, e_, f_}]:={b, c, d, e, f, (f*b+e*c+d^2)/a}; Join[ {0, 1, 0, 1, 1, -1, -1, 0, 0}, Transpose[ NestList[ nxt, {1, -1, -1, -1, -2, 1}, 50]][[1]]] (* Harvey P. Dale, Apr 06 2013 *)
PROG
(PARI) {a(n) = local(an, a0, num); if( n<0, -a(-n), if( n==0, 0, a0 = [1, 0, 1, 1, -1, -1, 0, 0, 1, -1, -1, -1, -2, 1]; an = vector(n); for( k=1, n, an[k] = if( k<15, a0[k], (num = an[k-1] * an[k-5] + an[k-2] * an[k-4] + an[k-3]^2) / an[k-6])); an[n]))};
CROSSREFS
Cf. A006722.
Sequence in context: A161284 A185215 A259551 * A216320 A308455 A214716
KEYWORD
sign,easy,nice
AUTHOR
Michael Somos, Dec 01 2000
STATUS
approved