login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058231
A Somos-8 sequence.
0
0, 0, 1, 36, -16, 5041728, -19631351040, -62024429150208, -2805793044443561984, -1213280369793911777918976, 6452140445339288271043778576384, -30464666973776461531165746768673505280, 2509543205099684468628113981366827179048960, -83207632517142132982462515955707028888811707910062080
OFFSET
0,4
REFERENCES
D. G. Cantor (dgc(AT)ccrwest.org), email to N. J. A. Sloane, Nov. 30, 2000.
LINKS
D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math. (Crelle's J.) 447 (1994), pp. 91-145.
R. W. Gosper and Richard C. Schroeppel, Somos Sequence Near-Addition Formulas and Modular Theta Functions, arXiv:math/0703470 [math.NT], 2007.
Yasuhiro Ishitsuka, Tetsushi Ito, Tatsuya Ohshita, Takashi Taniguchi, and Yukihiro Uchida, Periods modulo p of integer sequences associated with division polynomials of genus 2 curves, arXiv:2310.01013 [math.NT], 2023.
Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
FORMULA
For all n, 0 = u[4] * a[n+4] * a[n-4] + u[3] * a[n+3] * a[n-3] + u[2] * a[n+2] * a[n-2] + u[1] * a[n+1] * a[n-1] + u[0] * a[n]^2, where u[0], ..., u[4] are 314101616640, 25442230947840, 235226865664, -181502208, -16.
a(-n) = -a(n) for all n in Z. - Michael Somos, Jun 15 2011
MATHEMATICA
(* Assuming the first 10 terms are known. *)
init = {0, 0, 1, 36, -16, 5041728, -19631351040, -62024429150208, -2805793044443561984, -1213280369793911777918976};
init2 = Join[-Rest[init] // Reverse, init]; lg = Length[init];
rep = {u[0] -> 314101616640, u[1] -> 25442230947840, u[2] -> 235226865664, u[3] -> -181502208, u[4] -> -16}; Clear[a];
rec = u[4] a[n + 4] a[n - 4] + u[3] a[n + 3] a[n - 3] + u[2] a[n + 2] a[n - 2] + u[1] a[n + 1] a[n - 1] + u[0] a[n]^2 /. rep;
(* Print[Solve[rec == 0, a[n+4]][[1]] /. n -> n-4]; *)
a[n_] := a[n] = (1/a[n - 8])(16(1226959440 a[n - 4]^2 + 99383714640 a[n - 5] a[n - 3] + 918854944 a[n - 6] a[n - 2] - 708993 a[n - 7] a[n - 1]));
Do[a[n] = init2[[n + lg]], {n, -(lg - 1), lg - 1}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 08 2018 *)
CROSSREFS
Sequence in context: A260383 A056770 A061038 * A008894 A033973 A033356
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 02 2000
STATUS
approved