login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058035
Largest 4th-power-free number dividing n.
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 8, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = p ^ min(e,3), p prime, e > 0. - Reinhard Zumkeller, Jan 06 2012
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^3*(p+1))) = 0.947733... (A065466). - Amiram Eldar, Oct 13 2022
EXAMPLE
a(96) = 24 since the factors of 96 are {1,2,3,4,6,8,12,16,24,32,48,96} but 32, 48 and 96 all contain a 4th power factor (16).
MATHEMATICA
f[p_, e_] := p^Min[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
PROG
(Haskell)
a058035 n = product $
zipWith (^) (a027748_row n) (map (min 3) $ a124010_row n)
-- Reinhard Zumkeller, Jan 06 2012
(PARI) a(n) = my(f=factor(n)); for(k=1, #f~, f[k, 2]=min(3, f[k, 2])); factorback(f); \\ Michel Marcus, Sep 13 2017
KEYWORD
easy,nonn,mult
AUTHOR
Henry Bottomley, Nov 16 2000
STATUS
approved