

A057715


Composite numbers m = Product p_i^{e_i} such that p_j^{e_j} > p_k^{e_k} for all p_j < p_k.


3



12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 135, 144, 160, 175, 176, 189, 192, 208, 224, 275, 288, 297, 320, 325, 351, 352, 384, 405, 416, 425, 448, 459, 475, 513, 539, 544, 567, 575, 576, 608, 621, 637, 640, 675, 704, 720, 736, 768, 800, 832, 833, 864, 875
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

720 is included because 720 = 2^4 * 3^2 * 5^1 and 2^4 > 3^2 > 5^1.


MATHEMATICA

Select[Range[575], Greater @@ Power @@@ (fi = FactorInteger[#]) && Length[fi] > 1 &] (* Ray Chandler, Nov 06 2008 *)


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



EXTENSIONS



STATUS

approved



