login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057604
Primes of the form 4*k^2 + 163.
5
163, 167, 179, 199, 227, 263, 307, 359, 419, 487, 563, 647, 739, 839, 947, 1063, 1187, 1319, 1459, 1607, 2099, 2467, 2663, 3079, 3299, 3527, 4007, 4259, 4519, 4787, 5347, 5639, 5939, 6247, 6563, 7219, 7559, 7907, 8263, 8627, 8999, 9767, 10163, 10567, 10979, 11399, 11827, 12263
OFFSET
1,1
COMMENTS
These numbers are not prime in O_Q(sqrt(-163)). If p = n^2 + 163, then (n - sqrt(-163))*(n + sqrt(-163)) = p. - Alonso del Arte, Dec 18 2017
LINKS
Iain Fox, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
S. A. Goudsmit, Unusual Prime Number Sequences, Nature Vol. 214 (1967), 1164.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
MATHEMATICA
Select[Table[4n^2 + 163, {n, 0, 70}], PrimeQ] (* Vincenzo Librandi, Jul 15 2012 *)
PROG
(Magma) [a: n in [0..400] | IsPrime(a) where a is 4*n^2 + 163] // Vincenzo Librandi, Aug 07 2010
(PARI) lista(nn) = for(n=0, nn, my(p = 4*n^2 + 163); if(isprime(p), print1(p, ", "))) \\ Iain Fox, Dec 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tito Piezas III, Oct 08 2000
EXTENSIONS
Sequence corrected by Vincenzo Librandi, Jul 15 2012
STATUS
approved