

A057215


[1>01, 2>10, 3>01]transform of 3symbol ThueMorse A026600.


3



0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Old name was: Analog of A026600 using instead of 1: 0,1; instead of 2: 1,0; instead of 3: 0,1.
A nonperiodic sequence of 0 and 1, with one 0 and one 1 in every subsequence of three terms.
From Michel Dekking, Apr 17 2019: (Start):
(a(n)) is a morphic sequence, i.e., a lettertoletter projection of a fixed point of a morphism.
Let the morphism sigma be given by
1>123, 2>456, 3>345, 4>612, 5>561, 6>234,
and let the lettertoletter map delta be given by
1>0, 2>1, 3>1, 4>0, 5>0, 6>1.
Then (a(n)) = delta(x), with x the fixed point of sigma starting with 1.
This representation can be obtained by doubling 1,2 and 3, and renaming the resulting six letters as 1,2,3,4,5,6.
(End)
This sequence essentially equals A026605, which is its standard form: a(n) = A026605(n)1 for all n.  Michel Dekking, Apr 18 2019


LINKS

Table of n, a(n) for n=0..104.
Index entries for sequences that are fixed points of mappings


MATHEMATICA

Flatten[ Nest[ Flatten[ # /. {1 > {1, 2, 3}, 2 > {2, 3, 1}, 3 > {3, 1, 2}}] &, {1}, 4] /. {1 > {0, 1}, 2 > {1, 0}, 3 > {0, 1}}] (* Robert G. Wilson v, Mar 09 2005 *)


CROSSREFS

Cf. A026600, A026605
Sequence in context: A287657 A079336 A288670 * A284905 A291197 A269927
Adjacent sequences: A057212 A057213 A057214 * A057216 A057217 A057218


KEYWORD

nonn


AUTHOR

Richard Blavy, Sep 24 2000


EXTENSIONS

Name changed by Michel Dekking, Apr 17 2019


STATUS

approved



