|
|
A057185
|
|
Numbers n such that (19^n + 1)/20 is a prime.
|
|
15
|
|
|
17, 37, 157, 163, 631, 7351, 26183, 30713, 41201, 77951, 476929
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..11.
P. Bourdelais, A Generalized Repunit Conjecture
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
H. Lifchitz, Mersenne and Fermat primes field
|
|
MATHEMATICA
|
Select[Range[0, 10000], PrimeQ[((19^# + 1) / 20)] &] (* Vincenzo Librandi, Mar 20 2015 *)
|
|
PROG
|
(PRIME95) PRP=1, 19, 476929, 1, 0, 0, "20" # Paul Bourdelais, Mar 20 2015
|
|
CROSSREFS
|
Sequence in context: A060429 A052292 A154301 * A157467 A093343 A153685
Adjacent sequences: A057182 A057183 A057184 * A057186 A057187 A057188
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Sep 15 2000
|
|
EXTENSIONS
|
26183 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(8)-a(9) give probable primes discovered by Paul Bourdelais, Mar 15 2010
a(10) gives a probable prime discovered by Paul Bourdelais, Mar 18 2010
a(11) gives a probable prime discovered by Paul Bourdelais, Mar 20 2015
|
|
STATUS
|
approved
|
|
|
|