login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that (19^n + 1)/20 is a prime.
15

%I #29 May 18 2024 12:17:40

%S 17,37,157,163,631,7351,26183,30713,41201,77951,476929

%N Numbers n such that (19^n + 1)/20 is a prime.

%H P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>

%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

%H H. Dubner and T. Granlund, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.

%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>

%t Select[Range[0, 10000], PrimeQ[((19^# + 1) / 20)] &] (* _Vincenzo Librandi_, Mar 20 2015 *)

%o (Prime95) PRP=1,19,476929,1,0,0,"20" # _Paul Bourdelais_, Mar 20 2015

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Sep 15 2000

%E 26183 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008

%E a(8)-a(9) give probable primes discovered by _Paul Bourdelais_, Mar 15 2010

%E a(10) gives a probable prime discovered by _Paul Bourdelais_, Mar 18 2010

%E a(11) gives a probable prime discovered by _Paul Bourdelais_, Mar 20 2015