login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056078
Number of proper T_1-hypergraphs with 3 labeled nodes and n hyperedges.
2
0, 0, 2, 15, 54, 141, 306, 588, 1036, 1710, 2682, 4037, 5874, 8307, 11466, 15498, 20568, 26860, 34578, 43947, 55214, 68649, 84546, 103224, 125028, 150330, 179530, 213057, 251370, 294959, 344346, 400086, 462768, 533016, 611490, 698887, 795942, 903429, 1022162
OFFSET
1,3
COMMENTS
Also number of 3 X 3 matrices with nonnegative integer entries with zero main diagonal and without zero rows or columns, such that sum of all entries is n. - Vladeta Jovovic, Sep 06 2006
A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v. A proper hypergraph is a hypergraph without empty hyperedges or hyperedges containing all nodes. - Vladeta Jovovic, Sep 06 2006
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
FORMULA
a(n) = C(n+5,5) -6*C(n+3,3) +6*C(n+2,2) +3*C(n+1,1) -6*C(n,0).
a(n+1) = ( n^4 +20*n^3 +35*n^2 -140*n +84 )*n/120.
From Colin Barker, Jul 11 2013: (Start)
a(n) = (-240+394*n-135*n^2-35*n^3+15*n^4+n^5)/120.
G.f.: x^3 *(x-2) *(2*x^2-2*x-1) / (x-1)^6. (End)
EXAMPLE
There are 15 proper T_1-hypergraphs with 3 nodes and 4 hyperedges: {{3},{3},{2},{1}}, {{3},{2},{2},{1}}, {{3},{2},{2,3},{1}}, {{3},{2},{1},{1}}, {{3},{2},{1},{1,3}}, {{3},{2},{1},{1,2}}, {{3},{2},{1,3},{1,2}}, {{3},{2,3},{1},{1,2}}, {{3},{2,3},{1,3},{1,2}}, {{2},{2,3},{1},{1,3}}, {{2},{2,3},{1,3},{1,2}}, {{2,3},{2,3},{1,3},{1,2}}, {{2,3},{1},{1,3},{1,2}}, {{2,3},{1,3},{1,3},{1,2}}, {{2,3},{1,3},{1,2},{1,2}}.
MATHEMATICA
Table[(n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
PROG
(PARI) for(n=0, 25, print1((n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120, ", ")) \\ G. C. Greubel, Oct 07 2017
(Magma) [(n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120: n in [0..25]]; // G. C. Greubel, Oct 07 2017
CROSSREFS
Sequence in context: A098520 A216333 A378933 * A142861 A305673 A268761
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 26 2000
EXTENSIONS
More terms from Colin Barker, Jul 11 2013
STATUS
approved