login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055840
T(2n+6,n), where T is the array in A055830.
2
13, 109, 707, 4184, 23720, 131389, 717927, 3889730, 20959485, 112529350, 602684170, 3222508015, 17211197614, 91855019053, 489986311295, 2612981923560, 13932202684630, 74280962031435, 396042187457445, 2111713236134025, 11260951929261216, 60058486994980518, 320362547860069042, 1709162928241695964
OFFSET
0,1
LINKS
MAPLE
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=0 then fibonacci(n+1)
elif n=1 and k=1 then 0
else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
fi; end:
seq(T(2*n+6, n), n=0..30); # G. C. Greubel, Jan 21 2020
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[2*(n+3), n], {n, 0, 30}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 and k>n): return 0
elif (k==0): return fibonacci(n+1)
elif (n==1 and k==1): return 0
else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
[T(2*n+6, n) for n in (0..30)] # G. C. Greubel, Jan 21 2020
CROSSREFS
Cf. A055830.
Sequence in context: A271560 A142040 A002648 * A243417 A367592 A163845
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2000
EXTENSIONS
Terms a(19) onward added by G. C. Greubel, Jan 21 2020
STATUS
approved