login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055838
T(2n+4,n), where T is the array in A055830.
2
5, 30, 162, 850, 4425, 22995, 119560, 622512, 3246750, 16963375, 88779900, 465386220, 2443204946, 12844119225, 67608235800, 356288599640, 1879625199825, 9925931817045, 52464942758250, 277546278287250
OFFSET
0,1
LINKS
FORMULA
Conjecture: 5*n*(n+3)*(n-1)*a(n) -2*(n-1)*(11*n+8)*(n+2)*a(n-1) -3*(3*n-1)*(3*n-2)*(n+1)*a(n-2)=0. - R. J. Mathar, Mar 13 2016
MAPLE
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=0 then fibonacci(n+1)
elif n=1 and k=1 then 0
else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
fi; end:
seq(T(2*n+4, n), n=0..30); # G. C. Greubel, Jan 21 2020
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[2*n+4, n], {n, 0, 30}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 and k>n): return 0
elif (k==0): return fibonacci(n+1)
elif (n==1 and k==1): return 0
else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
[T(2*n+4, n) for n in (0..30)] # G. C. Greubel, Jan 21 2020
CROSSREFS
Cf. A055830.
Sequence in context: A254944 A003731 A343362 * A318591 A094972 A084158
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved