Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:01
%S 1,1,1,2,3,4,6,7,10,11,15,16,21,22,28,29,36,37,45,46,55,56,66,67,78,
%T 79,91,92,105,106,120,121,136,137,153,154,171,172,190,191,210,211,231,
%U 232,253,254,276,277,300,301,325,326,351,352,378,379,406,407,435
%N a(n) = T(n,n-2), array T as in A055801.
%C For n>2, a(n)+a(n+1) seems to be A002620(n+1)+1.
%H Colin Barker, <a href="/A055802/b055802.txt">Table of n, a(n) for n = 2..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F G.f.: x^2*(1 -2*x^2 +x^3 +2*x^4 -x^5)/((1-x)^3*(1+x)^2).
%F a(n) = A114220(n-1), n>=3. - _R. J. Mathar_, Feb 03 2013
%F From _Colin Barker_, Jan 27 2016: (Start)
%F a(n) = (2*n^2 +2*(-1)^n*n -6*n -11*(-1)^n +11)/16 for n>2.
%F a(n) = (n^2 - 2*n)/8 for n>2 and even.
%F a(n) = (n^2 - 4*n + 11)/8 for n odd. (End)
%F E.g.f.: (4*x*(x-2) + x*(x-3)*cosh(x) + (x^2 -x +11)*sinh(x))/8. - _G. C. Greubel_, Jan 23 2020
%p seq( `if`(n==2, 1, (2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16), n=2..65); # _G. C. Greubel_, Jan 23 2020
%t CoefficientList[Series[(1 -2*x^2 +x^3 +2*x^4 -x^5)/((1-x)^3*(1+x)^2), {x,0,65}], x] (* _Wesley Ivan Hurt_, Jan 20 2017 *)
%t Table[If[n==2,1, (2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16], {n,2,65}] (* _G. C. Greubel_, Jan 23 2020 *)
%o (PARI) Vec(x^2*(1-2*x^2+x^3+2*x^4-x^5)/((1-x)^3*(1+x)^2) + O(x^65)) \\ _Charles R Greathouse IV_, Feb 03 2013
%o (PARI) vector(65, n, my(m=n+1); if(m==2, 1, (2*m^2 -6*m +11 +(-1)^m*(2*m -11))/16)) \\ _G. C. Greubel_, Jan 23 2020
%o (Magma) [1] cat [(2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16: n in [3..65]]; // _G. C. Greubel_, Jan 23 2020
%o (Sage) [1]+[(2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16 for n in (3..65)] # _G. C. Greubel_, Jan 23 2020
%o (GAP) Concatenation([1], List([3..65], n-> (2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16 )); # _G. C. Greubel_, Jan 23 2020
%Y Cf. A002620, A134519.
%Y Cf. A055801, A055803, A055804, A055805, A055806.
%K nonn,easy
%O 2,4
%A _Clark Kimberling_, May 28 2000