The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055748 A chaotic cousin of the Hofstadter-Conway sequence A004001. 16
 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 13, 15, 15, 14, 15, 16, 16, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 18, 19, 21, 23, 21, 20, 24, 25, 26, 28, 27, 26, 30, 30, 29, 30, 30, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129. LINKS Martin Møller Skarbiniks Pedersen, Table of n, a(n) for n = 1..10000 J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161. Martin Møller Skarbiniks Pedersen, Plot of first 100000000 values (pdf) Martin Møller Skarbiniks Pedersen, Plot of a(n)/n for the first 100000000 values (pdf) Martin Møller Skarbiniks Pedersen, Plot of a(n) for the first 100,000,000 values (png) Martin Møller Skarbiniks Pedersen, Plot of a(n)/n for the first 100000000 values (png) K. Pinn, A chaotic cousin of Conway's recursive sequence, Experimental Mathematics, 9:1 (2000), 55-65. FORMULA a(1) = 1, a(2) = 1, a(n) = a(a(n-1)) + a(n - a(n-2) - 1) for n >= 3. [Jaroslav Krizek, Dec 09 2009] MAPLE A055748 := proc(n) option remember; if n<=2 then 1 else A055748(A055748(n-1))+A055748(n-1-A055748(n-2)); fi; end; MATHEMATICA a[n_] := a[n] = If[n < 3, 1, a[a[n - 1]] + a[n - a[n - 2] - 1]]; Array[a, 70] (* Michael De Vlieger, Mar 29 2017 *) CROSSREFS Cf. A004001, A005185. Sequence in context: A248801 A006949 A194814 * A284520 A342248 A090702 Adjacent sequences:  A055745 A055746 A055747 * A055749 A055750 A055751 KEYWORD nonn,look AUTHOR N. J. A. Sloane, Jul 13 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 20:41 EST 2022. Contains 350455 sequences. (Running on oeis4.)