OFFSET
1,2
COMMENTS
a (k,n)-partition of a chain C is a chain of k intervals of C of length n.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = (1/2)*(n-1)*(n^2+n-1)*(n^3-2*n+2).
EXAMPLE
a(2)=15 because in the linearly ordered set {1,..,8} we can choose in 15 ways 2 successive blocks of 2 consecutive elements.
PROG
(Magma) [(1/2) *(n-1)*(n^2+n-1)*(n^3-2*n+2): n in [1..35]]; // Vincenzo Librandi, Jun 30 2011
(PARI) a(n) = (n-1)*(n^2+n-1)*(n^3-2*n+2)/2; \\ Altug Alkan, Oct 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), Jun 07 2000
STATUS
approved