OFFSET
1,4
COMMENTS
a (k,n)-partition of a chain C is a chain of k intervals of C of length n.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = (1/6)*(n-1)*(n-2)*(n^2-3*n+3)*(n^2-3*n+1).
G.f.: -x^3*(1+28*x+62*x^2+28*x^3+x^4) / (x-1)^7. - R. J. Mathar, Mar 14 2016
EXAMPLE
a(3)=1 because in the linearly ordered set {1,..,9} we can choose in just one way 3 successive blocks of 3 consecutive elements.
PROG
(Magma) [1/6*(n-1)*(n-2)*(n^2-3*n+3)*(n^2-3*n+1): n in [1..35]]; // Vincenzo Librandi, Jun 30 2011
(PARI) a(n) = (n-1)*(n-2)*(n^2-3*n+3)*(n^2-3*n+1)/6; \\ Altug Alkan, Oct 04 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), Jun 07 2000
STATUS
approved