OFFSET
0,2
COMMENTS
Or, equally, denominators in expansion of (1+x)^(1/x)/e.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1.
LINKS
Robert Israel, Table of n, a(n) for n = 0..377
Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.
FORMULA
From Miklos Kristof, Nov 04 2007 (Start):
(1+x)^(1/x) = exp(log(1+x)/x) = exp(1)*exp(-x/2)*exp(x^2/3)*exp(x^3/4)*...
Let a(n) be A055505, let b(n) be this sequence. Then (1+x)^(1/x) = exp(1)*a(n)/b(n) x^n.
a(n)/b(n) = Sum_{i>=n} s(i,i-n)/i! where s(n,m) is a Stirling number of the first kind.
exp(1) = 1 + Sum_{i>=1} s(i,i)/i! for the n = 1 case.
a(1)/b(1) = 1/1 because 1+1/1!+1/2!+1/3!+1/4!+... = exp(1)
a(2)/b(2) = 1/2 because 1/2!+3/3!+6/4!+10/5!+... = 1/2*exp(1)
a(3)/b(3) = 11/24 because 2/3!+11/4!+35/5!+85/6!+... = 11/24*exp(1)
a(4)/b(4) = 7/16 because 6/4!+50/5!+225/6!+735/7!+... = 7/16*exp(1) (End)
EXAMPLE
(1-x)^(-1/x) = exp(1)*(1 + 1/2*x + 11/24*x^2 + 7/16*x^3 + 2447/5760*x^4 + 959/2304*x^5 + 238043/580608*x^6 + ...).
MAPLE
G:= (1-x)^(-1/x)/exp(1):
S:= series(G, x, 32):
seq(denom(coeff(S, x, j)), j=0..30); # Robert Israel, Sep 23 2016
MATHEMATICA
a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Denominator, {n, 0, 17}] (* Jean-François Alcover, Mar 04 2014 *)
Denominator[((1+x)^(1/x)/E + O[x]^20)[[3]]] (* or *)
Denominator[Table[Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}]/(2n)!, {n, 0, 10}]] (* Vladimir Reshetnikov, Sep 23 2016 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jul 11 2000
EXTENSIONS
STATUS
approved