login
A055495
Numbers n such that there exists a pair of mutually orthogonal Latin squares of order n.
1
3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
OFFSET
1,1
COMMENTS
n such that there exists a pair of orthogonal 1-factorizations of K_{n,n}.
REFERENCES
B. Alspach, K. Heinrich and G. Liu, Orthogonal factorizations of graphs, pp. 13-40 of Contemporary Design Theory, ed. J. H. Dinizt and D. R. Stinson, Wiley, 1992.
LINKS
R. C. Bose, S. S. Shrikhande, E. T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12(1960), 189-203.
Peter Cameron's Blog, The Shrikhande graph, 28 August 1010.
Eric Weisstein's World of Mathematics, Euler's Graeco-Roman Squares Conjecture
FORMULA
All n >= 3 except 6.
G.f.: -(x^4-x^3+2*x-3)*x/(x-1)^2. - Alois P. Heinz, Dec 14 2017
CROSSREFS
Sequence in context: A033545 A253570 A362580 * A072442 A063992 A324540
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 07 2000
STATUS
approved