OFFSET
1,1
COMMENTS
n such that there exists a pair of orthogonal 1-factorizations of K_{n,n}.
REFERENCES
B. Alspach, K. Heinrich and G. Liu, Orthogonal factorizations of graphs, pp. 13-40 of Contemporary Design Theory, ed. J. H. Dinizt and D. R. Stinson, Wiley, 1992.
LINKS
R. C. Bose, S. S. Shrikhande, E. T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12(1960), 189-203.
Peter Cameron's Blog, The Shrikhande graph, 28 August 1010.
Eric Weisstein's World of Mathematics, Euler's Graeco-Roman Squares Conjecture
Index entries for linear recurrences with constant coefficients, signature (2, -1).
FORMULA
All n >= 3 except 6.
G.f.: -(x^4-x^3+2*x-3)*x/(x-1)^2. - Alois P. Heinz, Dec 14 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 07 2000
STATUS
approved