OFFSET
1,2
COMMENTS
Replacing each edge by a vertex of degree 4, one sees that a(n) is also the number of non-isomorphic planar maps (a.k.a. clean dessins on the Riemann sphere) with n vertices of degree 4, and 2n edges.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 1..200
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
MATHEMATICA
a6384[0] = 1; a6384[n_] := (1/(2n))*(2*(3^n/((n + 1)*(n + 2)))*Binomial[2 n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[ n]]}]) + q[n];
q[n_?OddQ] := 2*(3^((n - 1)/2)/(n + 1))*Binomial[ n - 1, (n - 1)/2];
q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n - 2, (n - 2)/2];
a6849[n_] := 3^n*CatalanNumber[n]/2 + If[OddQ[n], 3^((n - 1)/2)* CatalanNumber[(n - 1)/2]/2, 0];
a[n_] := If[OddQ[n], a6384[n]/2, (a6384[n] + a6849[n/2])/2];
Array[a, 21] (* Jean-François Alcover, Aug 30 2019 *)
PROG
(PARI)
F(n) = { 3^n * binomial(2*n, n); }
S(n) = { my(acc = 0);
fordiv(n, d, if(d != n, acc += eulerphi(n/d) * F(d)));
return(acc); }
Q(n) = { if (n%2, 2 * F((n-1)/2) / (n+1),
2 * F((n-2)/2) * (n-1)/(n*(n+2))); }
A006384(n) = { if (n < 0, return(0)); if (n == 0, return(1));
(2*F(n)/((n+1)*(n+2)) + S(n)) / (2*n) + Q(n); }
G(n) = { 3^n * binomial(2*n, n) / (n + 1); }
A006849(n) = { if (n <= 0, return(0));
if (n%2, (G(n) + G((n-1)/2)) / 2, G(n)/2); }
a(n) = { if (n <= 0, return(0));
apply(n->a(n), vector(33, i, i)) \\ Gheorghe Coserea, Aug 20 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Valery A. Liskovets, May 27 2006
More terms from Sean A. Irvine, Mar 24 2013
STATUS
approved