login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054935
Number of planar maps with n edges up to orientation-preserving duality.
2
1, 3, 7, 33, 156, 1070, 7515, 59151, 483925, 4136964, 36416865, 329048627, 3037029030, 28553451498, 272766018806, 2642420298576, 25916954091582, 257009789443925, 2573962338306141, 26008719387850068, 264933535266372732
OFFSET
1,2
COMMENTS
Replacing each edge by a vertex of degree 4, one sees that a(n) is also the number of non-isomorphic planar maps (a.k.a. clean dessins on the Riemann sphere) with n vertices of degree 4, and 2n edges.
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
a(2k+1) = A006384(2k+1)/2 and a(2k) = (A006384(2k) + A006849(k))/2. - Gheorghe Coserea, Aug 05 2015
MATHEMATICA
a6384[0] = 1; a6384[n_] := (1/(2n))*(2*(3^n/((n + 1)*(n + 2)))*Binomial[2 n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[ n]]}]) + q[n];
q[n_?OddQ] := 2*(3^((n - 1)/2)/(n + 1))*Binomial[ n - 1, (n - 1)/2];
q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n - 2, (n - 2)/2];
a6849[n_] := 3^n*CatalanNumber[n]/2 + If[OddQ[n], 3^((n - 1)/2)* CatalanNumber[(n - 1)/2]/2, 0];
a[n_] := If[OddQ[n], a6384[n]/2, (a6384[n] + a6849[n/2])/2];
Array[a, 21] (* Jean-François Alcover, Aug 30 2019 *)
PROG
(PARI)
F(n) = { 3^n * binomial(2*n, n); }
S(n) = { my(acc = 0);
fordiv(n, d, if(d != n, acc += eulerphi(n/d) * F(d)));
return(acc); }
Q(n) = { if (n%2, 2 * F((n-1)/2) / (n+1),
2 * F((n-2)/2) * (n-1)/(n*(n+2))); }
A006384(n) = { if (n < 0, return(0)); if (n == 0, return(1));
(2*F(n)/((n+1)*(n+2)) + S(n)) / (2*n) + Q(n); }
G(n) = { 3^n * binomial(2*n, n) / (n + 1); }
A006849(n) = { if (n <= 0, return(0));
if (n%2, (G(n) + G((n-1)/2)) / 2, G(n)/2); }
a(n) = { if (n <= 0, return(0));
if (n%2, A006384(n)/2, (A006384(n) + A006849(n/2))/2) };
apply(n->a(n), vector(33, i, i)) \\ Gheorghe Coserea, Aug 20 2015
CROSSREFS
Average of A006384 and A006849, the latter interspersed with 0's (cf. formula).
Sequence in context: A057480 A051256 A057795 * A208989 A358961 A024496
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Valery A. Liskovets, May 27 2006
More terms from Sean A. Irvine, Mar 24 2013
STATUS
approved