The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054647 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes. 1
 30, 2310, 42840, 391545, 2375100, 10980585, 41761720, 136963255, 399689290, 1060984925, 2603641040, 5979294230, 12973080120, 26794003110, 53000811600, 100914240770, 185718969590, 331524753560, 575738427880, 975199600375, 1614655942900, 2618302433175 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,1 COMMENTS Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=12. REFERENCES V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991. LINKS T. D. Noe, Table of n, a(n) for n = 6..1000 FORMULA a(n) = 30*C(n, 6)+2100*C(n, 7)+25200*C(n, 8)+86625*C(n, 9)+116550*C(n, 10)+69300*C(n, 11)+15400*C(n, 12) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^6+3*n^5-86*n^4-240*n^3+2704*n^2+5232*n-34128)/31104. Empirical G.f.: 5*x^6*(169*x^6-1119*x^5+2535*x^4-1245*x^3-3030*x^2-384*x-6)/(x-1)^13. [Colin Barker, Jun 22 2012] CROSSREFS Cf. A054557-A054562. Sequence in context: A056093 A056070 A301377 * A061162 A230272 A230612 Adjacent sequences: A054644 A054645 A054646 * A054648 A054649 A054650 KEYWORD nonn AUTHOR Vladeta Jovovic, Apr 16 2000 EXTENSIONS More terms from James A. Sellers, Apr 16 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 20:10 EST 2023. Contains 359926 sequences. (Running on oeis4.)