login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054496
If n = p_1^e_1 * p_2^e_2 * p_3^e_3 * ..., p's = distinct primes, e's = positive integers, then a(n) = p_1^(e_1^2) * p_2^(e_2^2) * p_3^(e_3^2) * ... .
2
1, 2, 3, 16, 5, 6, 7, 512, 81, 10, 11, 48, 13, 14, 15, 65536, 17, 162, 19, 80, 21, 22, 23, 1536, 625, 26, 19683, 112, 29, 30, 31, 33554432, 33, 34, 35, 1296, 37, 38, 39, 2560, 41, 42, 43, 176, 405, 46, 47, 196608, 2401, 1250, 51, 208, 53, 39366, 55, 3584, 57
OFFSET
1,2
LINKS
EXAMPLE
a(24) = 1536, since 24 = 2^3 * 3^1 and 1536 = 2^(3^2) * 3^(1^2).
MAPLE
a:= n-> mul(i[1]^(i[2]^2), i=ifactors(n)[2]):
seq(a(n), n=1..50); # Alois P. Heinz, Jun 09 2014
MATHEMATICA
f[p_, e_] := p^(e^2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)
PROG
(Haskell)
a054496 n = product $
zipWith (^) (a027748_row n) (map a000290 $ a124010_row n)
-- Reinhard Zumkeller, Apr 27 2013
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]^2); factorback(f); \\ Michel Marcus, Jun 09 2014
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Leroy Quet, May 14 2000
STATUS
approved