Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 12 2021 10:13:22
%S 1,3,11,31,84,198,440,904,1766,3266,5802,9906,16384,26284,41104,62752,
%T 93831,137589,198309,281249,393148,542154,738480,994320,1324668,
%U 1747220,2283396,2958228,3801600,4848120,6138624,7720032,9647133,11982423,14798223,18176499
%N Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under action of dihedral group of the square D_4.
%H Colin Barker, <a href="/A054343/b054343.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,0,16,-24,16,8,-34,34,-8,-16,24,-16,0,8,-5,1).
%F G.f.: (2*x^6+2*x^5+x^4+4*x^2-2*x+1)/((1-x^4)^2*(1-x^2)^2*(1-x)^5).
%F a(n) = 5*a(n-1) - 8*a(n-2) + 16*a(n-4) - 24*a(n-5) + 16*a(n-6) + 8*a(n-7) - 34*a(n-8) + 34*a(n-9) - 8*a(n-10) - 16*a(n-11) + 24*a(n-12) - 16*a(n-13) + 8*a(n-15) - 5*a(n-16) + a(n-17) for n>16. - _Colin Barker_, Apr 26 2019
%e There are 11 nonisomorphic nonnegative integer 3 X 3 matrices with sum of elements equal to 2, under action of D_4:
%e [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 0] [0 0 0] [0 0 0]
%e [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [1 0 1] [0 0 0] [0 0 0] [0 0 0] [0 2 0]
%e [0 1 1] [1 0 1] [0 1 0] [1 0 0] [0 0 1] [0 1 0] [0 0 0] [1 0 0] [0 0 2] [0 2 0] [0 0 0].
%o (PARI) Vec((2*x^6+2*x^5+x^4+4*x^2-2*x+1)/((1-x^4)^2*(1-x^2)^2*(1-x)^5) + O(x^40)) \\ _Colin Barker_, Apr 26 2019
%Y Row n=3 of A343875.
%Y Cf. A005232, A052365.
%K easy,nonn
%O 0,2
%A _Vladeta Jovovic_, May 05 2000