login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054343
Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under action of dihedral group of the square D_4.
4
1, 3, 11, 31, 84, 198, 440, 904, 1766, 3266, 5802, 9906, 16384, 26284, 41104, 62752, 93831, 137589, 198309, 281249, 393148, 542154, 738480, 994320, 1324668, 1747220, 2283396, 2958228, 3801600, 4848120, 6138624, 7720032, 9647133, 11982423, 14798223, 18176499
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-8,0,16,-24,16,8,-34,34,-8,-16,24,-16,0,8,-5,1).
FORMULA
G.f.: (2*x^6+2*x^5+x^4+4*x^2-2*x+1)/((1-x^4)^2*(1-x^2)^2*(1-x)^5).
a(n) = 5*a(n-1) - 8*a(n-2) + 16*a(n-4) - 24*a(n-5) + 16*a(n-6) + 8*a(n-7) - 34*a(n-8) + 34*a(n-9) - 8*a(n-10) - 16*a(n-11) + 24*a(n-12) - 16*a(n-13) + 8*a(n-15) - 5*a(n-16) + a(n-17) for n>16. - Colin Barker, Apr 26 2019
EXAMPLE
There are 11 nonisomorphic nonnegative integer 3 X 3 matrices with sum of elements equal to 2, under action of D_4:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [1 0 1] [0 0 0] [0 0 0] [0 0 0] [0 2 0]
[0 1 1] [1 0 1] [0 1 0] [1 0 0] [0 0 1] [0 1 0] [0 0 0] [1 0 0] [0 0 2] [0 2 0] [0 0 0].
PROG
(PARI) Vec((2*x^6+2*x^5+x^4+4*x^2-2*x+1)/((1-x^4)^2*(1-x^2)^2*(1-x)^5) + O(x^40)) \\ Colin Barker, Apr 26 2019
CROSSREFS
Row n=3 of A343875.
Sequence in context: A236752 A034543 A268800 * A369442 A320238 A369399
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, May 05 2000
STATUS
approved