Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Oct 19 2022 11:19:28
%S 1,2,1,6,4,1,20,16,6,1,70,64,30,8,1,252,256,140,48,10,1,924,1024,630,
%T 256,70,12,1,3432,4096,2772,1280,420,96,14,1,12870,16384,12012,6144,
%U 2310,640,126,16,1,48620,65536,51480,28672,12012,3840,924,160,18,1
%N A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
%C In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
%C The column sequences are for m=0..20: A000984, A000302 (powers of 4), A002457, A002697, A002802, A038845, A020918, A038846, A020920, A040075, A020922, A045543, A020924, A054337, A020926, A054338, A020928, A054339, A020930, A054340, A020932.
%C Riordan array (1/sqrt(1-4x),x/sqrt(1-4x)). - _Paul Barry_, May 06 2009
%C The matrix inverse is apparently given by deleting the leftmost column from A206022. - _R. J. Mathar_, Mar 12 2013
%H G. C. Greubel, <a href="/A054335/b054335.txt">Rows n = 0..100 of triangle, flattened</a>
%H Paul Barry, <a href="http://arxiv.org/abs/1312.0583">Embedding structures associated with Riordan arrays and moment matrices</a>, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
%H Milan Janjić, <a href="https://www.emis.de/journals/JIS/VOL21/Janjic2/janjic103.html">Pascal Matrices and Restricted Words</a>, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
%F a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n<m.
%F Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
%F G.f. for column m: cbie(x)*((x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
%F G.f.: 1/(1-xy-2x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - _Paul Barry_, May 06 2009
%F Sum_{k>=0} T(n,2k)*(-1)^k*A000108(k) = A000108(n+1). - _Philippe Deléham_, Jan 30 2012
%F Sum_{k=0..floor(n/2)} T(n-k,n-2k) = A098615(n). - _Philippe Deléham_, Feb 01 2012
%F T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - _Philippe Deléham_, Feb 02 2012
%F Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - _Peter Bala_, Oct 17 2015
%e Triangle begins:
%e 1;
%e 2, 1;
%e 6, 4, 1;
%e 20, 16, 6, 1;
%e 70, 64, 30, 8, 1;
%e 252, 256, 140, 48, 10, 1;
%e 924, 1024, 630, 256, 70, 12, 1; ...
%e Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
%e From _Paul Barry_, May 06 2009: (Start)
%e Production matrix begins
%e 2, 1;
%e 2, 2, 1;
%e 0, 2, 2, 1;
%e -2, 0, 2, 2, 1;
%e 0, -2, 0, 2, 2, 1;
%e 4, 0, -2, 0, 2, 2, 1;
%e 0, 4, 0, -2, 0, 2, 2, 1;
%e -10, 0, 4, 0, -2, 0, 2, 2, 1;
%e 0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
%p A054335 := proc(n,k)
%p if k <0 or k > n then
%p 0 ;
%p elif type(k,odd) then
%p kprime := floor(k/2) ;
%p binomial(n-kprime-1,kprime)*4^(n-k) ;
%p else
%p kprime := k/2 ;
%p binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
%p end if;
%p end proc: # _R. J. Mathar_, Mar 12 2013
%p # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
%p PMatrix(10, n -> binomial(2*(n-1), n-1)); # _Peter Luschny_, Oct 19 2022
%t Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
%t a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 08 2011, updated Jan 16 2014 *)
%o (PARI) T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jul 20 2019
%o (Magma)
%o T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
%o [[T(n,k): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Jul 20 2019
%o (Sage)
%o def T(n, k):
%o if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
%o else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
%o [[T(n,k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Jul 20 2019
%o (GAP)
%o T:= function(n, k)
%o if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
%o else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
%o fi;
%o end;
%o Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # _G. C. Greubel_, Jul 20 2019
%Y Cf. A000984, A035324, A054336.
%Y Row sums: A026671.
%K easy,nice,nonn,tabl
%O 0,2
%A _Wolfdieter Lang_, Mar 13 2000