login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054235
Consider all integer triples (i,j,k), j,k>0, with i^3=j^3+binomial(k+2,3), ordered by increasing i; sequence gives j values.
3
2, 1, 31, 62, 11, 174, 120, 1352, 1168, 1140, 2602, 1244, 1394, 2287, 2982, 4469, 644, 3073, 1879, 10771, 1309, 17437, 35739, 734, 17425, 30566, 27350, 45142, 33266, 37592, 32212, 56555, 20376, 29832, 66403, 111466, 116150, 98808, 15668, 14279, 63561
OFFSET
1,1
COMMENTS
i values are A054234 and k values are A054236
LINKS
Jon E. Schoenfield, Table of n, a(n) for n=1..41
EXAMPLE
4^3 = 64 = 2^3+binomial(6+2,3); 11^3 = 1331 = 1^3+binomial(19+2,3).
MATHEMATICA
(* This is just a re-computation of A054235, given A054234 *)
A054234 = Cases[Import["https://oeis.org/A054234/b054234.txt", "Table"], {_, _}][[All, 2]];
A054235 = Reap[ Do[ Do[ r = Reduce[ i^3 == j^3 + Binomial[k+2, 3], k, Integers]; If[r =!= False, ijk = {i, j, k} /. ToRules[r]; Print[ijk]; Sow[ijk[[2]]]; Break[]], {j, 1, i-2}], {i, A054234}]][[2, 1]] (* Jean-François Alcover, Jan 03 2013, updated Jan 24 2020 *)
CROSSREFS
Sequence in context: A005693 A158419 A074011 * A016547 A081541 A344105
KEYWORD
nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 07 2000
EXTENSIONS
More terms from Jon E. Schoenfield, Jan 19 2009
STATUS
approved