login
A053804
Numbers where the difference of consecutive fifth powers is "close" to another fifth power: let m = k^5 - (k-1)^5; sequence lists the numbers k where m - floor(m^(1/5))^5 < floor(sqrt(k))^5.
0
1, 3509, 8054, 10237, 11911, 24518, 29644, 38259, 40054, 93098, 367053, 408283, 478061, 518644, 538691, 912840, 1008234, 2086954, 2544681, 2653852, 3897904, 4308165, 5595997, 5719544, 6656464, 6797839, 7137939, 8417467, 10504786, 12774105, 13949772, 14394569
OFFSET
1,2
EXAMPLE
a(2)=3509 because m = 3509^5 - 3508^5 = 757627875663781 and the condition 'm - floor(m^(1/5))^5 < floor(sqrt(k))^5' simplifies to '757627875663781 - 946^5 < 59^5', which is true, and 3509 is the second number having this property.
CROSSREFS
Cf. A053803.
Sequence in context: A224724 A338978 A274237 * A338392 A342399 A043448
KEYWORD
nonn
AUTHOR
Joe K. Crump (joecr(AT)carolina.rr.com), Mar 27 2000
EXTENSIONS
More terms from Sean A. Irvine, Jan 16 2022
STATUS
approved