login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053733
a(n) = ceiling(binomial(n,9)/n).
3
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 19, 55, 143, 334, 715, 1430, 2702, 4862, 8398, 13997, 22610, 35530, 54480, 81719, 120175, 173587, 246675, 345345, 476905, 650325, 876525, 1168700, 1542684, 2017356, 2615092, 3362260, 4289780, 5433722
OFFSET
1,11
LINKS
R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
MAPLE
seq(ceil(binomial(n, 9)/n), n=1..40); # G. C. Greubel, Sep 06 2019
MATHEMATICA
Table[Ceiling[Binomial[n, 9]/n], {n, 40}] (* G. C. Greubel, Sep 06 2019 *)
PROG
(PARI) vector(40, n, ceil(binomial(n, 9)/n)) \\ G. C. Greubel, Sep 06 2019
(Magma) [Ceiling(Binomial(n, 9)/n): n in [1..40]]; // G. C. Greubel, Sep 06 2019
(Sage) [ceil(binomial(n, 9)/n) for n in (1..40)] # G. C. Greubel, Sep 06 2019
CROSSREFS
Cf. Sequences of the form ceiling(binomial(n,k)/n): A000012 (k=1), A004526 (k=2), A007997 (k=3), A008646 (k=5), A032192 (k=7), A053618 (k=4), A053643 (k=6), A053731 (k=8), this sequence (k=9).
Sequence in context: A209817 A281156 A060100 * A032194 A024532 A036421
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 25 2000
STATUS
approved