|
|
A053670
|
|
Least number coprime to n and n+1.
|
|
14
|
|
|
3, 5, 5, 3, 7, 5, 3, 5, 7, 3, 5, 5, 3, 11, 7, 3, 5, 5, 3, 11, 5, 3, 5, 7, 3, 5, 5, 3, 7, 7, 3, 5, 5, 3, 11, 5, 3, 5, 7, 3, 5, 5, 3, 7, 7, 3, 5, 5, 3, 7, 5, 3, 5, 7, 3, 5, 5, 3, 7, 7, 3, 5, 5, 3, 7, 5, 3, 5, 11, 3, 5, 5, 3, 7, 7, 3, 5, 5, 3, 7, 5, 3, 5, 11, 3, 5, 5, 3, 7, 11, 3, 5, 5, 3, 7, 5, 3, 5, 7, 3, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A179675(n) = smallest m such that a(m) = n-th odd prime. - Reinhard Zumkeller, Jul 23 2010
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
a[n_] := For[k = 3, True, k++, If[CoprimeQ[k, n, n+1], Return[k]]]; Table[a[n], {n, 1, 101}] (* Jean-François Alcover, Sep 20 2012 *)
|
|
PROG
|
(Haskell)
a053670 n = head [x | x <- [3, 5 ..],
n `gcd` x == 1, (n + 1) `gcd` x == 1]
-- Reinhard Zumkeller, Dec 28 2012
(PARI) a(n)=my(N=n*(n+1), k=2); while(gcd(k++, N)>1, ); k \\ Charles R Greathouse IV, Nov 10 2015
(Python)
from math import gcd
def a(n):
k, m = 3, n*(n+1)
while gcd(k, m) != 1: k += 2
return k
print([a(n) for n in range(1, 102)]) # Michael S. Branicky, Sep 25 2021
|
|
CROSSREFS
|
Cf. A053669-A053674.
Sequence in context: A129488 A211023 A279494 * A085963 A282177 A184593
Adjacent sequences: A053667 A053668 A053669 * A053671 A053672 A053673
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
Henry Bottomley, Feb 15 2000
|
|
EXTENSIONS
|
More terms from Andrew Gacek (andrew(AT)dgi.net), Feb 21 2000 and James A. Sellers, Feb 22 2000
|
|
STATUS
|
approved
|
|
|
|