OFFSET
1,3
COMMENTS
Phi summation results over numbers not exceeding n are given in A002088 while summation over the divisor set of n would give n. This is a further way of Phi summation.
Equals row sums of triangle A143620. - Gary W. Adamson, Aug 27 2008
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
Given n = 36, its reduced residue system is {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}; the Euler phi of these terms are {1, 4, 6, 10, 12, 16, 18, 22, 20, 28, 30, 24}. Summation over this last set gives 191. So a(36) = 191.
MAPLE
A038566_row := proc(n)
a := {} ;
for m from 1 to n do
if igcd(n, m) =1 then
a := a union {m} ;
end if;
end do:
a ;
end proc:
A053570 := proc(n)
add(numtheory[phi](r), r=A038566_row(n)) ;
end proc:
seq(A053570(n), n=1..30) ; # R. J. Mathar, Jan 09 2017
MATHEMATICA
Join[{1}, Table[Sum[EulerPhi[i] * KroneckerDelta[GCD[i, n], 1], {i, n - 1}], {n, 2, 60}]] (* Alonso del Arte, Nov 02 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 17 2000
STATUS
approved