Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 27 2015 08:34:09
%S 1,2,0,4,0,-1,8,0,-4,0,16,0,-12,0,1,32,0,-32,0,6,0,64,0,-80,0,24,0,-1,
%T 128,0,-192,0,80,0,-8,0,256,0,-448,0,240,0,-40,0,1,512,0,-1024,0,672,
%U 0,-160,0,10,0,1024,0,-2304,0,1792,0,-560,0,60,0,-1,2048,0,-5120,0,4608,0,-1792,0,280,0,-12,0,4096,0,-11264,0,11520,0,-5376
%N Triangle of coefficients of Chebyshev's U(n,x) polynomials (exponents in decreasing order).
%C a(n,m)= A053117(n,n-m) = 2^(n-m)*A049310(n,n-m).
%C G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with G.f. 1/(1-2*x*z-z^2).
%C Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers).
%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H T. D. Noe, <a href="/A053118/b053118.txt">Rows n=0..100 of triangle, flattened</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F a(n, m) := 0 if n<m or m odd, else ((-1)^(3*m/2))*(2^(n-m))*binomial(n-m/2, n-m); a(n, m) = 2*a(n-1, m) - a(n-2, m-2), a(n, -2) := 0 =: a(n, -1), a(0, 0)=1, a(n, m)= 0 if n<m or m odd; G.f. for m-th column (signed triangle): (-1)^(3*m/2)*x^m/(1-2*x)^(m/2+1) if m >= 0 is even else 0.
%e 1;
%e 2,0;
%e 4,0,-1;
%e 8,0,-4,0;
%e 16,0,-12,0,1;
%e ... E.g. fourth row (n=3) {8,0,-4,0} corresponds to polynomial U(3,x)= 8*x^3-4*x.
%t Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevU[n, x], x]], {n, 0, 12}]] (* _Jean-François Alcover_, Jan 20 2012 *)
%Y Cf. A053117, A049310, A000129.
%Y Triangle reflected without zeros: A008312 (the main entry).
%K easy,nice,sign,tabl
%O 0,2
%A _Wolfdieter Lang_