login
A052829
A simple grammar: partial sums of A052870.
2
0, 1, 2, 4, 10, 25, 69, 197, 583, 1762, 5441, 17042, 54072, 173334, 560659, 1827306, 5995570, 19787135, 65643226, 218777532, 732181107, 2459576149, 8290442750, 28031056619, 95045477945, 323112137130, 1101073839413, 3760472582922, 12869488098939, 44127605854574
OFFSET
0,3
FORMULA
G.f.: (x/(1-x))*Product_{k>=1} (1+x^k)^a(k). - Vladeta Jovovic, Jul 22 2004
G.f. A(x) satisfies: A(x) = (x/(1 - x)) * exp(Sum_{k>=1} (-1)^(k+1) * A(x^k) / k). - Ilya Gutkovskiy, Jun 28 2021
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=PowerSet(S), S=Prod(C, B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
CROSSREFS
Cf. A052870 (first differences).
Sequence in context: A191768 A027432 A032128 * A339295 A001998 A005817
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Alois P. Heinz, Mar 16 2016
STATUS
approved