OFFSET
0,1
COMMENTS
The best upper bound known for the Erdős-Szekeres problem for n >= 6.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Happy End Problem
FORMULA
a(n) = 2 + (2^(2*n-5)*Gamma(n - 3/2))/(sqrt(Pi)*Gamma(n-1)).
G.f.: (x^2*(1-x) + (4 + x^2 -x^3)*sqrt(1-4*x))/(2*(1-x)*sqrt(1-4*x)). - Eric W. Weisstein, Jul 29 2011
MAPLE
seq( binomial(2*n-5, n-2) + 2, n=0..40); # Robert Israel, May 19 2019
MATHEMATICA
Table[Binomial[2n-5, n-2] + 2, {n, 0, 30}]
PROG
(PARI) a(n)=binomial(2*n-5, n-2)+2 \\ Charles R Greathouse IV, Jul 29 2011
(Magma) [2 +Binomial(2*n-5, n-2): n in [0..30]]; // G. C. Greubel, May 18 2019
(Sage) [2 +binomial(2*n-5, n-2) for n in (0..30)] # G. C. Greubel, May 18 2019
(GAP) List([0..30], n-> 2+Binomial(2*n-5, n-2)) # G. C. Greubel, May 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved