login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of noncaterpillar trees on n nodes (A000055-A005418).
2

%I #22 Aug 16 2020 08:37:16

%S 0,0,0,0,0,0,1,3,11,34,99,279,773,2103,5661,15160,40373,107355,285059,

%T 757273,2013177,5361100,14303274,38250297,102538714,275597098,

%U 742674804,2006661720,5436008057,14763754746,40196603110,109703958381,300091975184,822705857129

%N Number of noncaterpillar trees on n nodes (A000055-A005418).

%H Alois P. Heinz, <a href="/A052471/b052471.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CaterpillarGraph.html">Caterpillar Graph</a>

%p with(numtheory):

%p b:= proc(n) option remember; `if`(n<=1, n,

%p (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))

%p end:

%p a:= n-> b(n) -(add(b(k) *b(n-k), k=0..n)-`if`(irem(n, 2)=0,

%p b(n/2), 0))/2 -ceil(2^(n-4) + 2^(iquo(n-2, 2)-1)):

%p seq(a(n), n=1..40); # _Alois P. Heinz_, May 18 2013

%t b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}])/(n-1)]; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2 - Ceiling[2^(n-4) + 2^(Quotient[n-2, 2] - 1)]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Feb 19 2016, after _Alois P. Heinz_ *)

%Y Cf. A000055, A005418.

%K nonn

%O 1,8

%A _Eric W. Weisstein_

%E a(14) and up from _Eric W. Weisstein_, Jul 17 2004.