login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052449
a(n) = 1 + Product_{k=1..n} Fibonacci(k).
4
2, 2, 3, 7, 31, 241, 3121, 65521, 2227681, 122522401, 10904493601, 1570247078401, 365867569267201, 137932073613734401, 84138564904377984001, 83044763560621070208001, 132622487406311849122176001, 342696507457909818131702784001
OFFSET
1,1
COMMENTS
The first 8 terms are primes. - Jonathan Vos Post, Dec 08 2012
a(22) and a(28) are also primes. - Robert Israel, Jun 10 2015
There are no further primes up to a(300). - Harvey P. Dale, Feb 28 2023
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Number.
FORMULA
a(n) = A003266(n)+1. - Robert Israel, Jun 10 2015
MAPLE
seq(1+mul(combinat:-fibonacci(j), j=1..n), n=1..30); # Robert Israel, Jun 10 2015
MATHEMATICA
1 + Table[Times @@ Fibonacci[Range[n]], {n, 20}] (* T. D. Noe, Dec 29 2012 *)
FoldList[Times, Fibonacci[Range[20]]]+1 (* Harvey P. Dale, Feb 28 2023 *)
PROG
(PARI) vector(20, n, 1+prod(j=1, n, fibonacci(j))) \\ G. C. Greubel, Sep 26 2019
(Magma) [1+(&*[Fibonacci(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Sep 26 2019
(Sage) [1+product(fibonacci(j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 26 2019
(GAP) List([1..20], n-> 1+Product([1..n], j-> Fibonacci(j)) ); # G. C. Greubel, Sep 26 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved